数二线代的考研大纲
??行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 |A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
矩阵指在数学中,按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵,由19世纪英国数学家凯利首先提出。它是高等代数学中的常见工具,其运算是数值分析领域的重要问题。
线性方程组的解(这里可解释上面最后两个小圆点)一应用:线性方程组不同解的情况的充要条件,无解:系数矩阵的秩小于增广矩阵的秩,唯一解:系数矩阵的秩等于增广矩阵的秩等于未知数的个数,无穷多解:系数矩阵的秩等于增广矩阵的秩小于未知数的个数,推论:系数矩阵的秩=非自由未知量的个数=r;解向量组的秩=自由未知量的个数=n-r,一定理:AX=B有解的充要条件是R(A)=R(A,B)。
行矩阵、列矩阵:m×n阶矩阵中,m=1,称为行矩阵,也称为n维行向量;n=1,称为列矩阵,也称为m维列向
零矩阵:所有元素都为0的m×n阶矩阵,n阶方阵:m×n阶矩阵A中,m=n; n阶方阵A,可定义行列式记为|A|; n阶方阵存在主对角线及主对角线元素。
发表评论