|京ICP备14027590号-282

【考研数学辅导班】考研数学三线性代数考研大纲_启道(考研考数学的专业有哪些?)

原标题:【考研数学辅导班】考研数学三线性代数考研大纲_启道

考研数学是考研公共课中的必考科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。
对于很多考生来说,考研数学是一门比较难的科目,很多同学为了取得更好的分数都会选择报考研数学辅导班!但面对市场上如此多的考研数学辅导机构,应该如何选择呢?到底哪个考研数学辅导班比较好呢?考生又该如何选择呢?小编只推荐启道考研数学辅导班.  
  一个好的考研数学辅导班,一定不是刚刚成立没有辅导经验,而是要至少七八年的成功辅导经验,这一点很多考研辅导机构是做不到的。而启道起步于清华北大等一流名校考研辅导,十年考研成功辅导经验,被誉为中国名校考研-保研-考博黄埔军校。
距离2019考研大纲的发布还有几个月,为了便于现阶段各位考生的备考,启道小编特此整理出2018考研数学三考研大纲。基本上每年的大纲不会有太大的变动,各位2019考研er可以参照去年的大纲进行复习备考。
?考试科目:微积分、线性代数、概率论与数理统计
?考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
微积分约56%
线性代数约22%
概率论与数理统计约22%
四、试卷题型结构
单项选择题选题8小题,每小题4分,共32分
填空题6小题,每小题4分,共24分
解答题(包括证明题)9小题,共94分
?线性代数
一、行列式
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(schmidt)方法.
四、线性方程组
考试内容
线性方程组的克拉默(cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解
考试要求
1.会用克拉默法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
考试内容
二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵

形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
以上是高数三线性代数考研大纲,希望对大家有所 助。最后,启道考研数学辅导班,预祝大家考研成功!返回搜狐,查看更多

责任编辑:

发表评论

|京ICP备18012533号-223